Bounds on the Bayes and minimax risk for signal parameter estimation
نویسندگان
چکیده
A 3 r m h estimating the parameter 0 from a parametrized signal problem (with 0 5 0 5 L) observed through Gaussian white noise, four useful and computable lower bounds for the Bayes risk were developed. For problems with different L and Merent signal to noise ratios, some bounds am superior to the others. The lower bound obtained from taking the maximum of the four, serves not only as a good lower bound for the Bayes risk but also as a good lower bound for the minimax risks. Threshold behavior of the Bayes risk is also evident as shown in our lower bound.
منابع مشابه
Minimax Estimator of a Lower Bounded Parameter of a Discrete Distribution under a Squared Log Error Loss Function
The problem of estimating the parameter ?, when it is restricted to an interval of the form , in a class of discrete distributions, including Binomial Negative Binomial discrete Weibull and etc., is considered. We give necessary and sufficient conditions for which the Bayes estimator of with respect to a two points boundary supported prior is minimax under squared log error loss function....
متن کاملTruncated Linear Minimax Estimator of a Power of the Scale Parameter in a Lower- Bounded Parameter Space
Minimax estimation problems with restricted parameter space reached increasing interest within the last two decades Some authors derived minimax and admissible estimators of bounded parameters under squared error loss and scale invariant squared error loss In some truncated estimation problems the most natural estimator to be considered is the truncated version of a classic...
متن کاملOn Bayes Risk Lower Bounds
This paper provides a general technique for lower bounding the Bayes risk of statistical estimation, applicable to arbitrary loss functions and arbitrary prior distributions. A lower bound on the Bayes risk not only serves as a lower bound on the minimax risk, but also characterizes the fundamental limit of any estimator given the prior knowledge. Our bounds are based on the notion of f -inform...
متن کاملBayes, E-Bayes and Robust Bayes Premium Estimation and Prediction under the Squared Log Error Loss Function
In risk analysis based on Bayesian framework, premium calculation requires specification of a prior distribution for the risk parameter in the heterogeneous portfolio. When the prior knowledge is vague, the E-Bayesian and robust Bayesian analysis can be used to handle the uncertainty in specifying the prior distribution by considering a class of priors instead of a single prior. In th...
متن کاملMinimax Bayes, asymptotic minimax and sparse wavelet priors
Pinsker(1980) gave a precise asymptotic evaluation of the minimax mean squared error of estimation of a signal in Gaussian noise when the signal is known a priori to lie in a compact ellipsoid in Hilbert space. This `Minimax Bayes' method can be applied to a variety of global non-parametric estimation settings with parameter spaces far from ellipsoidal. For example it leads to a theory of exact...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Information Theory
دوره 39 شماره
صفحات -
تاریخ انتشار 1993